G Service

GPU Service Corporation 100 Interpace Parkway Parsippany, New Jersey 07054 201 263-6500 TELEX 136-482 Writer's Direct Dial Number: File: 2349.2.3.a

2349.2.4

May 12, 1980 E&L-2699

Mr. Paul Leech U.S. Nuclear Regulatory Commission Environmental Projects - Branch 2 7920 Norfolk Avenue Mail Stop P-522 Bethesda, Maryland 20014

Dear Mr. Leech:

SUBJECT: PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT REQUEST FOR INFORMATION

Enclosed is a document which is in response to a request for information from Mr. K. Shiu at Argonne National Laboratories regarding sludge characteristics in the Unit-2 containment sump. The document is entitled "Solids in Reactor Building Basement".

If you should have any questions regarding this, please do not hesitate to call me at (201) 263-6341.

Very truly yours,

R. M. Milford III Licensing Engineer

RMM/jed Enclosures

> 0019 5 1/1

8005270 497

METROPOLITAN EDISON COMPANY Subsidiary of General Public Utilities Corporation

Subject Solids in Reactor Building Basement

Location TMI

Date April 29, 1980

To R. Milford

> Per your request of 4/25/80 regarding the above, the following information is provided:

- 1. ORNL letter, W.D. Shults to J. A. Daniel, September 14, 1979, Reported Analyses of Reactor Building Analyses. The bottom sample contained a greenish precipitate, 10% by volume, (4% after centrifuge) in amounts indicated on Attachment 1.
- 2. We estimate between 8,000 and 10,000 lbs. of wetted, packed solids. The basis for this is as follows:
 - 6363 gal/in (avg) precipitous matter in bottom 4 inches of containment water.
 - Precipitous matter, wet packed volume estimated at ~ 4% or between 900 and 1000 gallons.
 - c. Average bulk density of wetted packed solids is estimated at 68 lbs/ft3.

If I may be of further assistance, please call.

J. A. Daniel

JAD: dms

cc: R. W. Heward

G. K. Hovey

L. J. Lehman

J. R. Thorpe

E. G. Wallace

R. F. Wilson

Attachment 1

Solids from bottom sample (uCi/ml at 0800, 8/28/79, based on total volume of bottom sample)

Isotope	Sample 1 ^a	Sample 2 ²
58 _{Co} .	0.0055	0.0079
60 _{Co}	0.0011	0.0015
952r	0.037	0.061
95Nb	0.104	0.162
103 _{Ru}	0.042	0.078
106 _{Ru}	0.035	0.051
110mAg	0.0015	0.0025
113 _{Sn*}	0.015	0.021
125 _{Sb}	0.022	0.033
129m _{Te}	0.277	0.514
131 _I	0.0108	0.016
134 _{Cs}	0.018	0.011
137 _{Cs}	0.078	0.049
140 _{Ba}	0.041	0.047
140La	0.106	0.122
141Ce	0.0034	0.0097
144Ce	0.0134	0.0446
89 + 90sr	2.78	

^aTwo samples were taken at different times; they were centrifuged, washed, and -scanned.

^{*}Tentative identification

Solids from bottom sample, neutron activation analysis (units are ug/ml, based on total volume of bottom sample)

235 _U	0.00459
In	0.16
129 _I	0.07
Cu	- 54
Mn	0.62
A1	7
Ca	2

Spark source mass analysis of solids from bottom sample (ppm) based on total volume of bottom sample

	the state of the property of the		
Ag	8*	Li	0.3
A1	8	Mg	7
В	3	Mn	1
Ca	2	Мо	1 ^b
Cd	0.5	Na	1
Co	0.1	Ni	10
Cr	2	P	0.4
Cs	0.5	Rb	0.3
Cu	54a	S	5
Fe	10	Sr	0.2
I	0.7	Te	0.2
In	0.3	Ti	0.5
K	1	2n	2
U			
υc	0.106	Puc	0.00016
234U	0.022 AT %	238 _{Pu}	0.1 AT %
235 _U	2.35 AT %	239Pu	91.13 AT %
236 _U	0.065 AT %	240 _{Pu}	7.57 AT %
238 _U	97.56 AT %	241pu	1.10 AT %
		242 _{Pu}	0.1 assumed

^{*}May be some memory

aInternal standard from NAA

bStable Mo; not fission product

^cThermal emission mass resin bead analysis